top of page

Technology Platform

Kadimastem has developed
ground-breaking medical applications in regenerative medicine- “off the shelf” cell products

Cell therapy is a new frontier in treating degenerative diseases by replacing, restoring, or repairing malfunctioning cells with healthy, functional cells.

Kadimastem is pioneering this form of treatment, with clinical trials showing promising results in treating ALS.


Our unique technology enables us to produce functioning cells differentiated from pluripotent stem cells. The Company focuses on transplanting healthy brain glial cells (Astrocytes) to support the survivability of nerve cells.the publication of its Phase I/IIa clinical trial results in the peer-reviewed prestigious journal of Translational Medicine. The article describes the safety and efficacy results of AstroRx®; Kadimastem's cell therapy product in its first in-human phase I/IIa clinical trial in 10 ALS patients conducted in Israel from 2018 to 2020 ( NCT03482050). Link to the article

March 2023: Kadimastem Earns FDA Approval of its IND Application For its US Multi-Site Phase IIa Clinical Trial of AstroRx® to Treat ALS
IND Approval Allows Commencement of the Multi-Site Clinical Trial and Recruitment of Eligible ALS Patients for Repeated Dosing of AstroRx® in Three-Month Intervals


 Type 1 Diabetes  & Insulin dependent Diabetes:

Based on our differentiation platform technology, insulin secreting islets (IsletRx) which are comprised of highly purified functional human pancreatic islet cells. IsletRx can be produced in large quantities. IsletRx cells have demonstrated an ability to balance blood sugar levels and maintain normal levels over time in immunocompetent diabetic mice in our preclinical proof-of-concept study.

Stem Cells Overview

Stem cell therapy is emerging as a new paradigm for treating and potentially curing human neurodegenerative diseases. It involves the use of stem cell-derived living cells to replace and initiate the production of other cells that are missing or damaged due to disease or injury. At the moment, millions of patients are suffering from a wide range of neurodegenerative diseases

What exactly are stem cells and how can they be used to cure degenerative diseases?

Stem cells reside in almost every tissue of the human body. These cells are already committed to the fate of the tissue, in each tissue these cells continuously repair and maintain the tissue, an ability that declines with aging. Stem cells are characterized by self-renewal and the capacity to form differentiated cells, cells with a specific function such as heart cells or insulin secreting cells. The potential of stem cells is the generation of cell therapies that can be transplanted to restore the function of deficient tissues.  Says Dr. Michal Izrael, PhD, Kadimastem’s VP of R&D.

Stem cells are defined by two important characteristics: They are able to renew themselves through cell division, and, under certain physiological or experimental conditions, they can differentiate into (turn to) tissue or organ specific cells. In some organs, such as the gut and bone marrow, stem cells often repair and replace damaged tissues. In other organs, such as the pancreas and the heart, stem cells only rarely divide.

4-5 days after fertilization, the pre-embryo, called blastocyst, has an inner mass of cells that can give rise to any cell type (except the placenta).

Human embryonic stem cells (hESC) lines are derived from this inner cell mass. These cells are called pluripotent due to their potency to differentiate into many (pluri) cell types.

Induced pluripotent stem cells (iPSC) are pluripotent stem cells that are artificially made from “regular” adult cells (for example: a skin cell). Inserting specific genes into a cell can cause a the cell to become pluripotent. iPSC share many similar characteristics with hESC, among them unlimited proliferation potential and the ability to differentiate to all the cell types comprising the body. Kadimastem uses both pluripotent cell sources (hESC and iPSC) for deriving its differentiated cells.

Collectively these cells are called human pluripotent stem cells (hPSCs).


Scientific Publications

1‭.  Marc GotkineYoseph CaracoYossef LernerSimcha BlotnickMaor WanounouShalom Guy SlutskyJudith ChebathGraciela Kuperstein,Elena EstrinTamir Ben-HurArik HassonKfir MolakandovTehila Sonnenfeld,Yafit StarkAriel RevelMichel Revel & Michal Izrael. Safety and efficacy of first-in-man intrathecal injection of human astrocytes (AstroRx®) in ALS patients: phase I/IIa clinical trial results

2. Michal Izrael, Kfir Molakandov, Ariel Revel, et al. Astrocytes Downregulate Inflammation in Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome: Applicability to COVID-19 

3‭.Kfir Molakandov, Denise A. Berti, Avital Beck, et al. ‬Selection for CD26− and CD49A+ Cells From Pluripotent Stem Cells-Derived Islet-Like Clusters Improves Therapeutic Activity in Diabetic Mice


4. Izrael M‭, ‬Slutsky SG‭, ‬Admoni T‭, ‬Cohen L‭, ‬Granit A‭, ‬Hasson A‭, ‬et al‭. ‬Safety and efficacy of human embryonic stem cell-derived‭ ‬astrocytes following intrathecal transplantation in SOD1‭(‬G93A‭) ‬and NSG animal models‭. ‬Stem cell research‭ ‬&‭ ‬therapy‭. ‬2018‭;‬9‭(‬1‭):‬152‭.‬


 5. ‬Izrael Michal‭, ‬Slutsky Shalom Guy‭, ‬Joseph Itskovitz-Eldor and Revel Michel‭ (‬December 27th 2017‭). ‬Astrocytes in Pathogenesis‭ ‬of ALS Disease and Potential Translation into Clinic‭, ‬Astrocyte‭, ‬Maria Teresa Gentile and Luca Colucci D’Amato‭, ‬IntechOpen‭, ‬DOI‭: ‬10.5772‭/‬intechopen.72862‭.‬


6‭. ‬Izrael M‭, ‬Zhang P‭, ‬Kaufman R‭, ‬Shinder V‭, ‬Ella R‭, ‬Amit M‭, ‬et al‭. ‬Human oligodendrocytes derived from embryonic stem cells‭: ‬Effect of noggin on phenotypic differentiation in vitro and on myelination in vivo‭. ‬Molecular and cellular neurosciences‭. ‬2007‭;‬34‭(‬3‭):‬310-23‭.‬

‭ ‬

7. ‬Barbeito L‭. ‬Astrocyte-based cell therapy‭: ‬new hope for amyotrophic lateral sclerosis patients‭? ‬Stem cell research‭ ‬&‭ ‬therapy‭. ‬2018‭; ‬9‭: ‬241‭.‬

Scientific Publications
Stem Cell Ovrview
bottom of page